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Summary

Computational efficiency in structural optimization can be

enhanced if the intensive computations associated with the

calculation of the sensitivities, that is, gradients of the behav-

ior constraints, are reduced. Approximation to gradients of

the behavior constraints that can be generated with small

amount of numerical calculations is proposed. Structural op-

timization with these approximate sensitivities produced cor-

rect optimum solution. Approximate gradients performed

well for different nonlinear programming methods, such as

the sequence of unconstrained minimization technique,
method of feasible directions, sequence of quadratic pro-

gramming, and sequence of linear programming. Structural

optimization with approximate gradients can reduce by one
third the CPU time that would otherwise be required to solve

the problem with explicit closed-form gradients. The pro-

posed gradient approximation shows potential to reduce in-

tensive computation that has been associated with traditional

structural optimization.

Introduction

Structural optimization, via nonlinear mathematical pro-

gramming techniques, follows two distinct steps. First, a

search direction is generated and then a move distance along
that direction is determined. The direction and the move

distance are used to update and iterate the design until con-

vergence to an optimum. The generation of a search direc-

tion typically requires the gradients of the behavior con-

straints of the structural optimization problem. Gradients of
the behavior constraints can be obtained either in explicit

terms by repeated application of the chain rule of differentia-
tion or numerically by using a finite-difference scheme. In

both cases computationaly intensive gradient calculations are

required. The primary goal of this study was to explore the

possibiIity of improving computational efficiency of calcula-
tions of the gradients of the behavior constraints, thereby

making optimization less comPutation intensive.

Gradient of behavior constraints, such as stresses and dis-

placements, can be considered to consist of two distinct
terms. The first accounts for the local effects, while the sec-

ond represents the influence of the entire structure on the gra-

dient. The first term is easy to calculate, while the second

term is computation intensive. The proposition, here, is to

retain the first term and to explore whether an approximate

gradient will suffice for the second, that is, whether the opti-
mum can be reached with fewer calculations. Even though

different nonlinear programming techniques, such as methods

of feasible direction, sequential quadratic programming, and

penalty function, etc., use gradient information to calculate
search directions, the actual implementations depend on the

optimizer chosen. The feasibility of using approximate gra-
dients in structural optimization will be investigated for

different optimization methods to ensure that the conclu-
sions are independent of the optimization algorithms. Optimi-

zation using approximate gradients has been incorporated

into the design code CometBoards (which stands for Com-

parative Evaluation Test Bed of Optimization and Analysis
Routines for the Design of Structures (ref. 1). Many optimi-

zation problems have been solved successfully. For numeri-

cal illustration, two examples were considered: a forward

swept wing and a ring structure. In addition, summaries of
the results for several other problems are given without de-
tailed elaboration.

The subject matter of this paper is presented in six sec-

tions: design as a nonlinear programming problem and

solution methods, optimization methods, approximate sen-
sitivities of behavior constraints, numerical illustrations,

discussions, followed by conclusions.

Design As Nonlinear Programming
Problem And Solution Methods

To examine the merits and limitations of approximate gra-

dients in structural optimization, the design of trusses under

multiple load conditions is cast as the following nonlinear



mathematicalprogrammingproblemandsolvedusingdiffer-
entalgorithms:
Find the n design variables, such as member areas of a truss

within prescribed upper and lower bounds that make the

scaler weight function W a minimum under a set of stress and

displacement constraints.

The weight function W can be written as

tl

W= Z wjAjLj (1)

j=l

whereAj is the cross sectional area; Lj, the length; and wj, the
weight density of thej th element. To reduce the number of

independent design variables, areas of a group of members
are linked; thus the weight function defined by equation (1)

has to be modified. However, this modification is carried out

automatically and, because of its complexity, is not shown

here in explicit terms.

To evaluate the effect of gradient approximations, only
stress and displacement constraints are considered. These
constraints can be formulated as

Stress constraint--

g% = tri -1<0 (i=1 ..... ns)
tY io

Displacement constraint--

xj
= -s---l<0 (j=n s +1 ..... ns +nd)gxj

(2)

(3)

where _i is the design stress for the ith element, _rio is the per-

missible stress for the i th element; xj is the jth displacement

component, X)o is the displacement limitation for thej th dis-
placement component, and ns, and nd are the number of stress

and displacement constraints, respectively.

In a mathematical programming technique, the optimal de-
sign yopt is obtained iteratively from an initial design ._°in,

say, K iterations. The design is updatedat each iteration (k) by
calculating two quantities: a direction Sk and a step length ak.

The optimal design, using the direction and associated step

length, can be written as

K

._opt = ._0 + Zctkg k (4)
1

k=l

The direction Sk is typically generated from the gradients of
the objective function and the gradients of the active con-

straints. A one-dimensional search along the direction "_kis

carried out to obtain the optimum move distance at. The

design is updated, and iteration is continued until conver-

gence or until a stop criterion is satisfied.

Optimization Methods

In this investigation, four different optimization methods

were considered: (1) sequence of unconstrained minimiza-

tions technique (SUMT), (2) sequential quadratic program-

ming technique of the International Mathematical Subroutine

'Library (IMSL) routine DNCONG, (IMSL-SQP) (3) method

of feasible directions (FD), and (4) sequence of linear pro-

gramming (SLP). The selected optimization techniques are

well known in the literature, and hence only a brief descrip-

tion of each method is provided herein. Readers, however,

may refer to specific references for further details on each

optimization method.

Sequence of Unconstrained Minimization Technique

In the sequence of unconstrained minimization technique

(SUMT), the constrained optimization problem is solved as

a sequence of unconstrained minimization problems through

an extended penalty function (ref. 2). The direction vector
Sk in SUMT is calculated from the gradients of the behavior

constraints and objective function following a modified

Newton's approach.

Sequential Quadratic Programming Technique, DNCONG
of IMSL

The sequential quadratic programming method, available

in IMSL DNCONG routine (IMSL-SQP), solves the non-

linear problem as a sequence of quadratic subproblems

(ref. 3). The direction vector in IMSL-SQP is generated by

solving a quadratic subproblem with a quadratic approxima-

tion of the objective function and a linearization of the

behavior constraints. The constraint linearization requires the
gradients of the behavior constraints.

Method of Feasible Directions

In the method of feasible directions (FD) a search
direction S is determined that simultaneously satisfies two

conditions: (1) the direction is feasible, that is, ,_Tvg] < 0,

and (2) the direction is usable, that is, sTVw< O. Here, Vg/
represents the gradients of active constraints. Further infor-
mation of the method of feasible directions can be found in

references 4 to 6.

Sequential Linear Programming

In the method of sequential linear programming (SLP),

an SLP for the original, nonlinear problem is obtained by lin-

earizing a set of critical constraints and the objective function

about a design point by Taylor series approximation (ref. 4).

The linearization uses the gradients of the behavior con-

straints and objective function.



Approximate Sensitivities of Behavior

Constraints

Sensitivity matrices of behavior constraints, such as

stresses and displacements, can be considered to have two
distinct terms: The first, which accounts for local effects, can

be calculated with minimal computational effort once the

structural analysis has been completed. The second term,

which pertains to the response of the total structure as a

single unit, is much more complex and requires extensive nu-

merical computation. The calculations for both terms have

been published earlier (refs. 7 and 17) and will not be re-

peated here. In this study the closed-form analytical sensitiv-

ity expressions were specialized to generate approximate gra-

dients of stresses and displacements. The complexity of each

term of the sensitivity expression, is illustrated for a three-bar
truss.

Because an analysis tool has little influence on the perfor-

mance of a nonlinear programming algorithm, either the

force method or the displacement method can be used to

illustrate the basic concepts. The integrated force method

(IFM) of analysis was used to examine the merits and limita-

tions of approximate gradients since it had been used earlier

to formulate explicit sensitivities (ref. 7), and it brings

simplicity and clarity to gradient expressions. The IFM

(refs. 8 and 9) considers all internal forces {F} as the primary

unknowns, which are obtained as the solution to a system of

governing equations. These governing equations are obtained

by coupling the m equilibrium equations ([B] {F} = {P}) to

the (r = n - m) compatibility conditions ([C] [G] {F} = {0}) as

[B] l{F}=r_]_TJ {P}; [SI{F,={P*} (5)

where [B] is the (mxn) equilibrium matrix, [C] is the (rxn)

compatibility matrix, [G] is the (nxn) concatenated block

diagonal flexibility matrix, {F} is the n component internal
force vector, {P} is the m component external mechanical

load vector, [S] is the (nxn) IFM governing matrix, n is the

internal force degrees of freedom of the structure, and m is its

displacement degrees of freedom. Displacements can be

obtained from forces {F} by back substitution as

{X} = [J][G] {F} (6)

where {X} is the m component nodal displacement vector
and [J] = m rows of [ [S]-I] T

The IFM provides two basic equations, one for forces

(eq. (5)) and the other for displacements (eq. (6)). The force

equation can be differentiated to obtain the sensitivity of

stress parameters, and the displacement equation can be dif-

ferentiated for displacement sensitivity. The sensitivity

expressions, which had been formulated previously (ref. 7),

are not repeated herein, but their final forms are given.

Explicit Gradients of Stresses

The gradient of stresses [Vcr] is a (nxn) matrix. Its n rows

correspond to n design variables, representing the areas of the

n members of a truss, and its n columns represent the n mem-

ber stress components.

[Wrl = [{Wrl}, {Wr2} ..... {Wrn} ] (7)

where the gradient of a stress component {Vcrk} is

{V%}=, a'l

% (8)

With these definitions, the explicit (nxn) gradient matrix for

stresses {cr} can be written as (ref. 7)

(9a)

where

[01 ]
[D]=[S] -1 . . , _. , [F]

[C][GI
(9b)

[El = [gll

g'22

1

Al
1

A2

I

An



(e)gkk=

F2
[Y] =

The first term in stress gradients (eq. (9a)) is a simple diago-

nal matrix representing local contributions, and its computa-

tion requires a trivial amount of calculations after analysis

has been completed for forces {F}. The second term, how-
ever, is more complex, representing contributions to the sen-

sitivity from the entire structure, and its calculation is compu-
tation intensive.

Explicit Gradients of Displacements

The gradients of displacements [VX] is a (nxm) matrix.

Its columns correspond to m displacement components, and

its rows represent the n design variables. The sensitivity

matrix of the displacement constraints can be written as

(ref. 7)

[VXi=[{VXI}, {VX2}..... {VXn}] (lOa)

[7X]= [[Jl[Sdg]]T + [JI[G][D] (lOb)

The elements of the diagonal matrix [Sdg] are given by

(Sdg)kk = -gkk Fk/Ak (1 I)

The first term in equation (10b) has a sparse form and

requires trivial computation, while the second term can be

computation intensive. Analytical gradient expressions given

by equations (9a) and (10b) are hereinafter referred to as IFM

explicit gradients.

Approximate Gradients of Stresses

The approximate gradient of stresses, which is a diagonal
matrix of dimension (n×n), is the first term in equation (9a),

-- 100 in. ,.- 100 in.-_

2 3 4

1 _ Px

Figure 1 .DThree-bar truss. (Elements are circled,
nodes are not.)

and it has the following form:

where [ _7tr] is the approximate gradient of stresses. From

equation (12), it can be observed that the calculation of

approximate gradients of stresses requires minimal computa-
tions once analysis has been completed for forces.

Approximate Gradients of Displacements

Approximate gradients of displacements [ (7X], obtained

by retaining the first term in equation (10b), has the follow-

ing form:

[VX] = [[J][Sdg ]]T (13)

The matrix [J] is calculated during the determination of dis-

placements (see eq. (6)), and [Sag] is a diagonal matrix; thus,
the calculation of displacement sensitivity also involves mini-

mal computations. The approximate gradient expressions
given by equations (12) and (13) are referred to as IFM

approximate gradients

Gradients for a Three-Bar Truss

To illustrate the complexity of each term in the gradient

expression, an exampIe of a three-bar truss shown in figurel

was considered. The three member stresses (o.l, o'2, o.3) and

two nodal displacements (X1, X2) were considered to be the
behavior constraints, and their sensitivities were calculated

for the three member areas (A 1, A2, A3). The closed-form

analytical gradient of member stresses has the following
form:



[Vo'] =

0

0
o]0

-I-
_lell _le12 _le13

_2e21 9_2e22 _2e23

_3e31 _3e32 9_3e33

(14)

where

. -e2 2. Ge3
_RI = "4"2A?E' _R2 = A_ E ' _R3 = "¢_A2E

e,, :_[,_O,(O_ +0,)]; el2 = _[-'_PlP3];

e2i=l[p2(P3-pi)]; :  [-VTp,

e23=-'r

e31 =_[-_P3(Pl+P2)]; e32=-lr[-'_PiP3];

]e33 =- PlP2P3
r

and where r = PiP2 + 2PIP3 + P2P3' Pi = AiEi/gi' and A i, E i,

gi (for i = 1,2,3) are the areas, Young's moduli, and lengths
of each of the three-bar elements of the truss; respectively.

The approximate gradients of the stress constraints has the
form

f0 tf°0t{Vcrl} IVY2} = - , and {_Zcr3}= _F 3

A 3

(15)

Note that approximate gradients of stresses given in equa-

tion (15) are much simpler than their closed-form gradients

given in equation (14).

The approximate gradients for displacement constraints
for the three-bar truss are

,I7}7 - '

_2rl I

(16)

Note that the displacement gradient expressions do not in-

volve the third force component (F 3) because of the strain

compatibility condition of the IFM (refs. 8 and 9). As before,

the approximate displacement gradient expression given by

equation (16) is much simpler than their closed-form given

by equation (10b).

Numerical Illustrations

Optimum results for a set of 10 examples are provided. All

examples were selected from structural optimization literature

and are frequently used as test cases. For this illustration,

only, two examples are presented from this set. The first

quantifies the computations required to calculate constraints

and their gradients. The second illustrates the merits and

limitations of approximate gradients used in structural opti-
mization. Results for the other examples in the set are sum-
marized in tables 8 to 16 with brief discussions.

Numerical Example 1

The forward swept wing (ref. 10) depicted in figure 2 is

used to quantify the computation time required to calculate

constraint functions and their gradients. The wing was

modeled by finite elements with 30 grid points and 135 truss
elements. The structure is made of aluminum with a Young's

modulus E of 10 000 ksi, a Poisson's ratio, v of 0.3, and a

weight density, w, of 0.1 Ib/in. 3. The structure has 135 design

variables, being the areas of truss members, and 137 behavior
constraints consisting of 135 stress and 2 displacement con-

straints. Further details of the problem that are not essential
here can be found in references 10 and 11.

Constraint and gradient calculations for the problem were
carried out in an SGI 4D/35 Unix workstation. Even though,

theoretically, the CPU time required to calculate constraints

and their gradients should remain constant, in actuality some
variation in CPU time did occur because of factors such

as system usage and memory utilization of the workstation.

An average CPU time for each optimization was calculated

by solving the problem several times. The computation time
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Figure 2.--Forward-swept wing. (Representative elements are circled, nodes are not.I

is normalized with respect to the CPU time required to calcu-

late constraints when the problem is solved using the

optimizer SUMT. The results, presented in table 1, show that

the average CPU time to calculate constraints and gradients

varies by less than 1 percent for the different optimization

methods. On average, the CPU time required to calculate ex-

plicit gradients using the chain rule of differentiation is about
5 times more than that needed to calculate constraints. If nu-

merical differentiation using a forward finite-difference

scheme is followed, the gradient calculation can be about 22
times more than the calculation of the constraint functions.

The time required to calculate approximate gradients takes
about the same time that is required to calculate constraints.
The actual difference in the CPU time to calculate constraints

and their approximate gradients is very small.

Numerical Example 2

Minimum weight design of a 60-bar trussed ring under

three multiple-load conditions for stress and displacement

TABLE I .--FORWARD SWEPT WING: COMPUTATION FOR

CONSTRAINTS AND GRADIENTS

Optimization
methods

Constraints

Average CPU time

Analytical

gradients

SQP 0.983 4.967

FD 0.972 4.931

Finite-difference

gradients

21.163

21.661

SLP 0.967 4.946 22.028

SUMT a1.000 5.126 21.639

aNormalized to unit for SUMT.

constraints is considered to illustrate the use of approximate

gradients in structural optimization (refs. 11 and 12). The

problem is solved twice, first using explicit gradients and
then using approximate gradients. To ensure accurate com-

parison, all conditions are kept identical except for the gradi-
ent expressions.

The ring shown in figure 3 has inner and outer radii of

R i = 90 in. and Ro = 100 in. The ring is idealized by 60 truss

elements, and it is made of aluminum with Young's modulus
Eof 10 000 ksi and weight density w of 0.1 lb/in. 3. The ring

is subjected to three static-load conditions, as given in table

2. The constraints specified on stresses and displacements

are given in table 3. The optimum design of the ring was

determined using 198 behavior constraints, consisting of
180 stresses and 18 displacement constraints. The 60-bar

cross sectional areas are linked to obtain a reduced set of

25 design variables (table 4). Minimum weight design for

the ring was obtained first using closed-form explicit

gradients. The design was obtained next using approximate

gradients. In both cases the four optimization techniques
described in the section "Optimization Methods" were used.

TABLE 2.-_:_0-BAR TRUSSED RING:

LOAD SPECIFICATIONS

Load

condition

Case I

Case II

Case lIl

Node

number

15

18

22

Load Load

component, component,

P_, Py,
kip kip

-10.0 0

9.0 0

-8.0 3.0

-8.0 3.0

-20.0 I0.0
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Figure 3._ixty-bar trussed dng. (Elements are circled, nodes

are not.)

TABLE 3.----60-BAR TRUSSED RING:

CONSTRAINT SPECIFICATIONS

Constraint type Constraint description

Stress o i < o o , i = I, 2 .... ,60

o o = 10 ksi

Displacement Three constraints along both the x and

y directions of magnitude: 1.75 in. at

node 4, 2.25 in. at node 13, and

2.75 in. at node 19.

Minimum area Ai >_0.5 in. 2

TABLE 4--60-BAR TRUSSED RING:

DESIGN VARIABLE LINKAGE

Serial Design Member Serial Design Member

number variable linked number variable linked

1 1 49--> 60 2 2 1, 13

3 3 2, 14 4 4 3, 15

5 5 4, 16 6 6 5, 17

7 7 6, 18 8 8 7, 19

9 9 8, 20 10 10 9, 21

I1 11 10, 22 12 12 I1, 23

13 13 12, 24 14 14 25, 37

15 15 26, 38 16 16 27, 39

17 17 28, 40 18 18 29, 41

19 19 30, 42 20 20 31, 43

21 21 32, 44 22 22 33, 45

23 23 34, 46 24 24 35, 47

25 25 36, 48

The optimum designs and associated information obtained

using explicit and approximate gradients are summarized in

table 5. The rates of convergence of the weight versus the

number of reanalyses for two optimization techniques

(SUMT and IMSL-SQP) are presented in figures 4 and 5.

From the information given in table 5 and figures 4 and 5, we
observe the following:

Optimum weight.--The optimum weight of the ring is

about 308 lb. This optimum is reached by all optimization

methods when approximate or closed-form gradients are used

with one exception: The SLP method converged to the

correct optimum of 308.4 lb when approximate gradients

were used, but yielded an approximately I percent over

design (namely, 312 Ib) when explicit closed-form gradients

were used. Overall, the optimization with approximate

gradients performed well for all four optimization methods.

Number of active constraints.--At optimum all optimiza-

tion methods yielded one active displacement constraint when

explicit or closed-form gradients were used. Optimization

360

-- (308.73)
,_ 270

O)

180

90

Explicit gradients (73 cycles)

Approximate gradients (70 cycles)

I I I

0 25 50 75

Number of reanalysis cycles

Figure 4._onvergence of weight for ring using SUMT.

450 --

360

.O

-- 270
._¢

._m

180

90

m

(308.729)

Explicit gradients (63 cycles)

Approximate gradients (50 cycles)

I I
0 25 50

Number of reanalysis cycles

Figure 5._onvergence of weight for ring using
IMSL-SQP.
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TABLE 5.--60-BAR TRUSSED RING: AVERAGE CPU TIME

USING APPROXIMATE GRADIENTS

Optimization
methods

SUMT

IMSL-SQP

FD

SLP

Explicit gradients Approximate gradients

Dptimum Number CPU

weight, of active time,
Ib :,onstraints s

(a)

308.896 25S, ID 51.41

308.729 25S, ID 31.95

308.789 25S, ID 97.91

308.454 23S, ID 51.27

Optimum Number CPU
weight, of active time, b

lb :onstraints s

(a)

308.730 24S, ID 219.96

308.587 24S, ID 170.58

308.406 24S, ID 220.26

312.024 23S, ID 90.20

as denotes active stress constraints; D denotes active displacement
constraint.

bCPU time on Convex minicomputer.

with approximate gradients yielded 25 stress constraints; with

explicit gradients 24 stress constraints resulted. Optimization

using approximate gradients performed well when there were

numerous active constraints.

Amount of CPU time on Convex._From table 5, it can be

seen that the amount of computation time required when

approximate gradients were used was considerably less than

the CPU time required when explicit closed-form gradients

were used. From a set of 29 examples that have been solved

using different optimization methods (ref. 1), it was observed

that IMSL-SQP is very reliable optimizer. For the ring prob-

lem, the IMSL-SQP with approximate gradients required

only 18.7 percent of time required when explicit closed-form

gradients were used. The percent of CPU time required to

generate an optimum with gradient approximation was

23 percent by SUMT, 44 percent by FD, and 57 percent by

SLP. The average CPU time required by all four methods

when approximate gradients are used was about 33 percent of

the CPU time required for the solution of the problem with

closed-form analytical gradients. This reduction ratio is

defined as

(see fig. 4). We had expected the number of function evalu-

ations for the solution of a design problem to be higher with

approximate sensitivities; however, this was not the case.

Even though the number of reanalysis cycles to solve a prob-

lem with approximate and explicit gradients are comparable,

the execution CPU times required for the two procedures are

different because approximate calculations are inexpensive

(see table 5).

Summary of Other Numerical Examples

Brief summaries of the nine examples, along with opti-

mum results, are given in tables 6 to 16. The examples are

presented under two groups. Structures with 25 or more

members are in group I (table 6). Those with fewer than 25

members are listed in group II (table 7). The problem

solution uses alinking strategy that reduces the number of

independent design variables. (Hereinafter referred to as

"linking," which is available in CometBoards (ref. 1).)

TABLE 6._-GROUP I: DESIGN OF LARGE STRUCTURES

Problem Description

3

4

135-Bar forward

swept wing

60-Bar trussed

ring Oinked)

41-Bar spacer

truss Oinked)

25-Bar space

truss (linked)

10-Bay truss

Constraint Number Number Total

types of design of load number o1
variables conditions _onstraint_

Stress + Dis- 135 1 137

placement

Stress 25

Stress + Dis- !

placement

Stress + Dis- 8

placement

3 180

r

1 56

2 86

Stress + Dis- 51 1 91

placement

CPU time with approximate gradients

CPU time with closed form analytical gradients

Optimization with approximate gradients will be efficient if r I

is less than unity (r I < 1). For the ring problem rl = 1/3.

Number ofreanalysis cycles.--Figures 4 and 5 show that

the number of reanalysis cycles required to generate optimum

solutions when approximate or explicit gradients were used

was about the same but that somewhat fewer reanalysis

cycles were required when approximate sensitivities were

used. For example, for the ring problem, IMSL-SQP re-

quired 63 reanalysis cycles with closed-form sensitivities and

only 50 with approximate sensitivities (see fig. 5). These

values for the SUMT optimizer are 73 and 70, respectively

Problem Description

TABLE 7.-- GROUP II: DESIGN OF SMALL STRUCTURES

Constraint

types

6 10-Bar truss

7 10-Bar truss

(linked)

8 5-Bar truss

9 3-Bar truss

Stress + Dis-

placement

Stress + Dis-

placement

Stress + Dis-

placement

Stress + Dis-

placement

Number Number Total

of design of load number of
variables conditions constraints

10 ! 14

5 1 14

5 2 14

3 i 5



Group I

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

135-Bar forward swept wing (refs. 10 and 11).

60-Bar trussed ring with linking (refs. 11

and 12), (The constraint space for this problem

is different from the ring discussed earlier in the

section "Numerical Example 2.")

41-Bar spacer truss of the Space Station Free-

dom, with Linking (ref. 13).

25-Bar space truss with linking (ref. 14).

10-Bay truss (ref. 15).

Group II

Problem 6

Problem 7

Problem 8

Problem 9

10-Bar truss (ref. 11).

10-Bar truss with linking (ref. 11).

5-Bar truss (refs. 11 and 16).

3-Bar truss (refs. 11 and 15).

These examples were solved using two nonlinear program-
ming algorithms and three analysis tools: The algorithms

were (1) IMSL-SQP, the constrained optimization routine,

DNCONG, of IMSL, since this optimizer out performed most

other methods (ref. 1); and (2) NPSOL, nonlinear program-

ming solver routine E04UCF as implemented in the NAG

Fortran library, which appears to be another efficient

optimizer. The analysis tools were (1) the approximate IFM,

(2) IFM, and (3) the displacement method (DISP) (ref. 17).

The solutions were performed on a Cray YMP8/8128, ver-

sion Unicos 7.0.4.4 computer. The CPU estimates on the Cray

YMP are more approximate than on a personal SGI worksta-

tion because, at any given time, there may be several users and

some operations maybe automatically carried out in parallel.

Optimum weight.--Tables 8 to 16 show that the approxi-

mate IFM provided correct optimum solutions for all prob-

lems when IMSL-SQP optimization algorithm was used.

When NPSOL optimizer was used, only 8 of the 9 optimum

solutions were correct. Problem 1 in group I yielded an

overdesign of 8.6 percent when NPSOL is used. Also,

NPSOL provided an infeasible design for problem 5 when
the displacement method is used and an error of 19.7 percent

in the optimum weight. However, the nonperformance for

problem 1 when NPSOL is used does not appear to be a defi-

ciency of the approximate sensitivity.
Amount of CPU Time on Cray-YMP.--The CPU time on

the Cray-YMP can be approximate, especially for small

problems. For large problems in group I, the average CPU

time required to solve any one of the five problems using

both IMSL-SQP and NPSOL optimization methods are 28.41

CPU for approximate IFM, 78.90 CPU for IFM, and 148.28

CPU for the displacement method. Overall, the nine

examples performed as well as the ring problem, discussed in

"Numerical Example 2". The CPU reduction ratio "q for the

ring was 33 percent on a Convex computer. The same

reduction ratio "q for the five problems in group I is 36

percent on a Cray-YMP. Note that when the displacement

method is used as the analysis tool and sensitivities are

calculated analytically in closed form, the reduction ratios are

CPU time by displacement analyzer= 5.2
Ya = CPU time by approximate IFM

CPU time by displacement analyzer_ 1.9
Yb- CPU time by IFM

The displacement analyzer required twice the CPU time than

needed by IFM and five times that needed by the approximate

IFM. In other words the displacement analyzer, when

compared with IFM or approximate IFM, appears to be an

insufficient tool for structural optimization.

Discussions

Why do approximate gradients perform as well as the ex-

plicit closed-form gradients in structural optimization?

Although we do not know an exact answer to the question,

we provide the following explanation: Consider the design of

a structure with many design variables and many stress and

displacement constraints as shown in figure 6. Select a small

local segment of the structure, indicated by P in figure 6, and

consider the internal forces at the local region at P. It can be

assumed that the force variations at P depend on the relative

values of the design variables within the local region sur-

rounding P, along with such relative variations and contribu-

tions from other parts of the structure. As far as internal
force variation is concerned, the local effects appear to domi-
nate other influences in the structure. This observation has

similar connotation with structural indeterminacy, that is, the

effect of indeterminacy is neglected in the calculation of gra-

dients. However, the effect of indeterminacy is used during

the calculation of internal forces, which is represented

through the bottom (n-m) compatibility rows in the matrix

IS] (see eq. (5)). In brief, for the variation of stresses or the

calculation of their approximate sensitivities the consider-

ation of the local effects only may be sufficient in an iterative

design optimization scheme.

Sensitivities of displacements do not follow the logic that

is applicable to stresses because displacements are global
variables. In determinating displacement sensitivity, one

must consider the effect of the total structure as a single unit.

For example, the variation of displacement at point P cannot

be considered to depend primarily on a local region surround-

ing the point P. In other words, displacements at point P can

be easily influenced by changes in the flexibilities at a far-

away location such as at a region Q which is close to the

boundary. In approximate gradient calculation, the global na-

ture of the displacement variable is represented through the



TABLE 8.--PROBLEM 1: FORWARD SWEPT WING FOR STRESS AND

DISPLACEMENT CONSTRAINTS

Analysis methods IMSL-SQP

Normalized Normalized Number of

optimum CPU time, b gradient

weight, s Calls

lb

(a)

IFM, approximate 1.000

gradients

IFM, explicit 1.000

gradients

Displacement, ! .000

explicit gradients

!.00 100

2.61 73

2.07 100

NAG-NPSOL

Normalized Normalized Number of

optimum CPU time, I_ gradient

weight, s calls

lb

C1.086 0.26 100

1.000 2.82 73

1.000 8.98 100

aWeight is normalized with respect to IMSL-SQP results obtained using IFM approximate

gradients.

bCray YMP CPU time is normalized with respect to IMSL-SQP results obtained using IFM

approximate gradients.

Clnfeasible design.

TABLE 9.--PROBLEM 2: 60-BAR TRUSSED RING WITH LINKING FOR STRESS CONSTRAINTS

Analysis methods

IFM, approximate

gradients

Normalized

optimum

weight,

Ib

1.000

IMSL-SQP

Normalized I

CPU time, a

S

1.00

IFM, explicit gradients 1.000 0.31

Displacement, explicit ! .000 0.48

gradients

aCPU time on Cray YMP.

Number of

gradient calls

98

14

13

NAG-NPSOL

Normalized Normalized Number of

optimum CPU time, a gradient calls

weight, s

Ib

0.999 0.34 27

i .000 2.26 74

1.000 1.72 49

TABLE 10.--PROBLEM 3: 41-BAR SPACER TRUSS OF SPACE STATION FREEDOM

FOR STRESS AND DISPLACEMENT CONSTRAINTS

Analysis methods

IFM, approximate

gradients

IFM, explicit

gradients

Displacement, 1.000

explicit gradients

IMSL-SQP

Normalized Normalized Number of

optimum CPU time, a gradient calls

weight, s
Ib

1.000 1.00 13

1.000 2.49

aCPU time on Cray YMP.

NAG-NPSOL

Normalized Normalized Number of

4.51

optimum

weight,
lb

1.000

13 1.000

12 1,000

CPU time, a gradient calls

S

2.44 18

4.27 ! 8

3.44 28
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TABLE11.PROBLEM4:25-BARSPACETRUSSWITHLINKINGFOR
STRESSANDDISPLACEMENTCONSTRAINTS

Analysismethods

IFM,approximate
gradients

IFM,explicit

gradients

Displacement,

explicit gradients

aCPU time on Cray

IMSL-SQP NAG-NPSOL

Normalized Normalized Number of Normalized

optimum CPU time, a gradient calls optimum

weight, s weight,

Ib Ib

1.000 1.00

1.000 1.69

1.000 2.41

19 1.000

19 1.000

19 1.000

Normalized

CPU time, a

S

5.47

7.25

26.00

Number of

gradient calls

42

48

393

rMp.

TABLE 12. PROBLEM 5: 10-BAY TRUSS FOR STRESS AND DISPLACEMENT CONSTRAINTS

Analysis methods

IFM, aproximal_

gadients

IFM, explicit

gradients

Displacement, explicit

gradients

aCPU time on Cray YMP.

blnfeasible design.

IMSL-SQP

Normalized Normalized Number of

optimum CPU time, a gradient calls

weight, s

Ib

1.000 1.00 73

0.993 0.65 35

0.992 1.81 69

NAG-NPSOL

Normalized Normalized Number of

optimum L-'PU time, a gradient calls

weight, s

Ib

0.994 3.83 453

0.992 2.36 91

b0.797 0.96 20

TABLE 13.--PROBLEM 6: 10-BAR TRUSS FOR STRESS AND DISPLACEMENT CONSTRAINTS

Analysis methods

Normalized

optimum

weight, Ib

1MSL-SQP

Normalized

CPU time, a

S

Number of

gradient calls

IFM, approximate 1.000 1.00 17

gradients

IFM, explicit 0.994 1.43 22

gradients

Displacement, explicit 0.997 2.38 21

gradients

aC'PU time on Cray YMP.

NAG-NPSOL

Normalized Normalized

optimum CPU time, a

weight, s

lb

1.013 6.52

0.994 9.52

0.994 37.00

Number of

gradient calls

48

73

260

11



TABLE 14._PROBLEM 7: 10-BAR TRUSS WITH LINKING FOR

STRESS AND DISPLACEMENT CONSTRAINTS

Analysis methods

IFM, approximate

gradients

IFM, explicit

gradients

Displacement, explicit

gradients

aC"PU time on Cray YMP.

IIVISL-SQP

Normalized Normalized Number of

optimum CPU time, a gradient calls

weight, s

lb

1.000 1.00 18

1.000 1.33 18

1.000 2.50 18

NAG-NPSOL

Normalized Normalized Number of

optimum CPU time, a gradient calls

weight, s

Ib

1.000 6.25 38

1.000 7.00 34

35! .000 9.08

TABLE 15. PROBLEM 8: 5-BAR TRUSS FOR STRESS AND DISPLACEMENT CONSTRAINTS

Analysis methods

Normalized

optimum

weight,
lb

IFM, approximate 1.000

gradients

IFM, explicit 1.000

gradients

Displacement, explicit ! .000

gradients

aCPU time on Cray YMP.

IMSL-SQP

Normalized

iCPU time, a

$

1.00

0.52

0.90

Number of

gradient calls

48

21

17

NAG-NPSOL

Normalized Normalized

optimum

weight,

Ib

! .001

i.000

1.000

Number of

CPU time, a gradient calls

$

1.14 21

1.59 19

2.00 26

TABLE 16.--PROBLEM 9: 3-BAR TRUSS FOR STRESS AND DISPLACEMENT CONSTRAINT_

Analysis methods IMSL-SQP

Normalized Normalized Number of

optimum CPU time, a gradient calls

weight, s
lb

IFM, approximate 1.000

gradients

IFM, explicit 1.000

gradients

Displacement, 0.989

explicit gradients

aCPU time on Cra YMP.

!.00 6

1.00 7

3.00 6

NAG-NPSOL

Normalized Normalized Number of

optimum CPU time, a gradient callsj

weight, s
Ib

1.000 12.00 23

10

20

! .000 7.00

! .000 ! 2.50

12



Figure 6.--A structural form.

influence coefficient matrix [J] = m rows of [[S]-I] T (See

eqs. (6) and (13).) The matrix [S] represents the effect of the

entire structure as a single unit. Consider next a term of the

diagonal matrix (Sdg)kk, which is used to calculate approxi-
mate sensitivities of displacements. This term can be fac-

tored as (Sdg)kk = -g_(Ft/At) = -gkkCrk, ¢rk = FklAk. As men-
tioned earlier, the stress terms can be approximated. In the

approximate displacement sensitivity calculation, the global

effect is retained through the displacement coefficient matrix

[J], and the effect of force variables is approximated. Such

approximate gradients appear to be adequate in the design

optimization with displacement constraints.
The approximation of gradients and the associated reduc-

tion in the amount of computations presented in this paper

can be considered as an attempt to reduce numerical com-

plexity in the design optimization of structural systems using

nonlinear mathematical programming techniques. We

believe gradient approximation is a fertile research avenue

and that it should be extended to other types of common

behavior constraints, such as frequency and stability con-

straints and other type of nontruss structures.

Conclusions

Calculation of explicit gradients or sensitivities of stress

and displacement constraints required in structural optimiza-

tion can be computationaly intensive. Approximate sensitivi-
ties of such behavior constraints can be generated with trivial

computational effort. Approximate sensitivites have been
used to obtain correct optimum solutions to structural prob-

lems using different nonlinear optimization techniques, such

as sequence of unconstrained minimizations technique,

sequential quadratic programming, method of feasible direc-

tions, and sequential linear programming. Structural optimi-
zation with approximate gradients can reduce the CPU time

required to solve a problem by about one-third the computa-
tion time required with explicit closed-form gradients.

Extension of the present research to frequency and stability

constraints and to nontruss type structures can be fruitful.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, January 14, 1994.
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